翻訳と辞書
Words near each other
・ Generalized granuloma annulare
・ Generalized Hebbian Algorithm
・ Generalized helicoid
・ Generalized Helmholtz theorem
・ Generalized hypergeometric function
・ Generalized hyperhidrosis
・ Generalized integer gamma distribution
・ Generalized inverse
・ Generalized inverse Gaussian distribution
・ Generalized inversive congruential pseudorandom numbers
・ Generalized iterative scaling
・ Generalized Jacobian
・ Generalized Kac–Moody algebra
・ Generalized keyboard
・ Generalized Korteweg–de Vries equation
Generalized Lagrangian mean
・ Generalized least squares
・ Generalized lentiginosis
・ Generalized lifting
・ Generalized linear array model
・ Generalized linear mixed model
・ Generalized linear model
・ Generalized logistic distribution
・ Generalized Lotka–Volterra equation
・ Generalized lymphadenopathy
・ Generalized map
・ Generalized Maxwell model
・ Generalized mean
・ Generalized method of moments
・ Generalized minimal residual method


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Generalized Lagrangian mean : ウィキペディア英語版
Generalized Lagrangian mean

In continuum mechanics, the generalized Lagrangian mean (GLM) is a formalism – developed by – to unambiguously split a motion into a mean part and an oscillatory part. The method gives a mixed Eulerian–Lagrangian description for the flow field, but appointed to fixed Eulerian coordinates.
==Background==

In general, it is difficult to decompose a combined wave–mean motion into a mean and a wave part, especially for flows bounded by a wavy surface: e.g. in the presence of surface gravity waves or near another undulating bounding surface (like atmospheric flow over mountainous or hilly terrain). However, this splitting of the motion in a wave and mean part is often demanded in mathematical models, when the main interest is in the mean motion – slowly varying at scales much larger than those of the individual undulations. From a series of postulates, arrive at the (GLM) formalism to split the flow: into a generalised Lagrangian mean flow and an oscillatory-flow part.
The GLM method does not suffer from the strong drawback of the Lagrangian specification of the flow field – following individual fluid parcels – that Lagrangian positions which are initially close gradually drift far apart. In the Lagrangian frame of reference, it therefore becomes often difficult to attribute Lagrangian-mean values to some location in space.
The specification of mean properties for the oscillatory part of the flow, like: Stokes drift, wave action, pseudomomentum and pseudoenergy – and the associated conservation laws – arise naturally when using the GLM method.
The GLM concept can also be incorporated into variational principles of fluid flow.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Generalized Lagrangian mean」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.